Design Studies

- **95-98:** Muon Collider
 Much smaller than Linear Collider
 Hard Problem - Only conceptual studies done

- **99-04:** Neutrino Factories
 Similar technologies
 Only way to study leptonic CP violation if $\sin^2(2\theta_{13}) < 0.01$
 Detailed Studies including cost and performance

- **05–:** Returning to Collider

Technology R&D

- Hg Target Experiments
- Cooling Components and MICE Experiment
- 200 MHz SC RF, and FFAG Studies
Collaborators

- **US Collaboration** > 100 members
 BNL, Cornell, Fermi, LBNL, US Universities (including MSU)
 - 2 Spokespersons: S. Geer, Bob Palmer
 - Project manager: Mike Zisman
 - MCOG Steve Holmes Jim Siegrist, Tom Kirk
 - MUTAC Helen Edwards chair

- **European Groups**
 CERN, RAL (UK), INFN (Italy), Universities

- **Japanese Groups**
 KEK, Osaka, other Universities

- **Russia**
 BINP (including Skrinski, who started all this)
MUON COLLIDER

• Energy advantage over p’s (same as for e⁺ e⁻ Linear Collider)

• Suppressed Synchrotron Radiation \(\propto \gamma^4 \propto m^{-4} \)

 – Circular

 * Smaller because acceleration over many turns
 * \(\approx 1000 \) turns cf 1 collision for Linear Collider

 – no ”beamstrahlung”

 * \(\frac{dE}{E} \ll 1\% \) eg for Higgs mass determination
 (cf 30% for 3 TeV Linear)
 * allows larger \(N_\mu \) per bunch (Helps Luminisity)

 – larger spot size & emittance (For same Luminosity)
 * Easier Final Focus Tolerances

• Direct Higgs Production

 \[\mu^+ \mu^- \rightarrow h, A, H \quad (\sigma \propto m^2) \]
But: μ’s in diffuse phase space and μ’s Decay

- **Requires Efficient μ Production**
 - 20 T Solenoid to capture π’s
 - RF Phase Rotation to reduce dE/E

- **Requires Rapid Cooling (Beam size reduction)**
 - ionization cooling certain
 - study optical and other exotics

- **Requires Rapid Acceleration**
 - Recirculating Linear Acceleration (RLA) or FFAG

- **Must Shield Ring Magnets from Muon Decay Electrons**
 - 3-6 cm Tungsten Shield

- **Must Shield Detector from Decay Electron Background**
 - Loss of Forward Cone

- **Must be Deep to Avoid Serious Neutrino Radiation**
 - Limits Energy to 3-10 TeV
Neutrino Radiation Limits Maximum Energy

- Radiation $\propto \frac{E^3}{\text{length}^2} \propto \frac{E^3}{\text{depth}}$
- Use: 1/10 Federal limit = 10 mR/year
- Negligible problem at 1.5 TeV
- $E = 3$ TeV ok at 300 m depth
 - ≈ 10 mR/year
- $E > 3$ TeV Requires:
 - Beam wobbles, and/or
 - Special Locations (eg an island), and/or
 - Better Cooling (Optical Stochastic?)
Schematic of Muon Collider (not to scale)

Injection in both directions in all rings (not shown)

Proton driver
Target & Capture
Phase Rotate (Reduces dp/p)

Cool (Reduce Emittance by 1000,000)

Linac
FFAG/RLA
FFAG/RLA

Acceleration (.2 GeV - 1.5 T)

Synchrotron

Collider Ring (High Ave, Bending Field)
3 TeV Muon Collider (drawn to scale)
Compare sizes for 3 TeV Physics

14 TeV LHC pp (1.5 TeV)

5T 25+25 TeV pp
(≈ 3 TeV)

CLIC ee (3 TeV)

MuMu (3 TeV)

10 km

FNAL

BNL
NEUTRINO FACTORY

- Uses similar technologies as Collider, but
- Simpler than Collider

Flux Required for the Physics
Neutrino Factory Studies in the US

• 99-00 Neutrino Factory Feasibility Study I
 – Emphasized Feasibility, with complete Simulation
 – ”Entry Level Performance” ($\approx 0.2 \times 10^{20} \mu/\text{yearsec at 1 MW}$)

• 01-02 Neutrino Factory Feasibility Study II
 – Emphasized Performance
 – Similar Cost
 – 6 times Performance of Study I

• 03-04 Neutrino Factory Feasibility Study IIa
 – Emphasized Cost Reduction
 – Part of APS Neutrino Study (September 04)
 – 61 % cost of Study II
 – Same flux, both charges: 12 times Performance of Study I
 – Meets original Physics Requirement
 – Small further cost reduction possible: publication this year
Comparison: Conventional vs. Factory

- **Conventional:**
 \[p + C \rightarrow \pi_{High\ E} \rightarrow \bar{\mu} + \nu_\mu \]

- **Neutrino Factories:**
 \[p + Hg \rightarrow \pi_{Low\ E} \rightarrow \mu_{Low\ E} \rightarrow \mu_{High\ E} \rightarrow e + \nu_\mu + \bar{\nu}_e \]

For \(\theta_{13} \) or CP

- **Conventional:** \(\nu_\mu \rightarrow \nu_e \)
 - ID: e shower and no \(\mu \)
 - Detector: water or light plates
 - Background: \(\nu_e \)’s and NC \(\pi^0 \)’s \(\approx 10^{-2} \)

- **Neutrino Factories:** \(\nu_e \rightarrow \nu_\mu \)
 - ID: wrong sign \(\mu \)
 - Detector: Thin magnetized Fe plates or Liquid A
 - Background: Misidentified sign \(\approx 10^{-4} \)
Looking for CP violation

$\bar{\nu}/\nu$

$|\Delta m^2_{32}| = 0.0035 \text{ eV}^2$
$|\Delta m^2_{21}| = 5 \times 10^{-5} \text{ eV}^2$
$\sin^2 2\theta_{13} = 0.004$

$\Delta m^2_{32} < 0$
$\Delta m^2_{32} > 0$

Baseline (km)

$\delta_{CP} = 90^\circ, 1\sigma$

CP angle error (degrees)

True value of $\sin^2 2\theta_{13}$

Combined, T2K+NOvA+Reactor–II, JPARC–HK, NuFact–II
Ambiguities

Resolution of Ambiguities
Requires two distances

Sensitivity reach in $\sin^22\theta_{13}$

- $\sin^22\theta_{13}$
 - 3000 km+
 - 3000 km
- $\text{sgn}(\Delta m^2_{31})$
 - 7500 km+
 - 7500 km
- CP viol.
 - No sensitivity

N (neutrino) vs N (anti-neutrino)

- Normal Hierarchy
 - no CP violation
 - 2 solutions
- Inverted Hierarchy
 - no CP violation
 - CP viol.
Schematic of Neutrino Factory Study IIa

Proton driver

Target & Capture 10 %

Phase Rotate 17 %

Cool (factor 1-10) 21 %

Linac

Acceleration 42 %

RLA

FFAG 1

FFAG 2

Storage Ring 9 %

Approx 1 B$

• Very similar to front end of Collider (but easier)
• Technologies for Factory also apply to Collider
TECHNOLOGIES for Factory or Collider

1) Target and Capture

- Liquid mercury Jet ‘destroyed’ on every pulse
- 20 T Solenoid captures all low momentum pions
- Field subsequently tapers down to approx 2 T
- Target tilted to maximize extraction of pions
BNL Target Experiment E951

- Single pulse 4 Tp
 But density equiv to 1 MW
- Non-Explosive Dispersion good
- But 4 MW Nu-Factory requires: 32 Tp/bunch

CERN Proposed Experiment P186

- More intensity 32 Tp as required for 4 MW
- 15 T pulsed Magnet near completion
2) Phase Rotation (Reduce dp/p prior to Cooling)

Neuffer’s Bunched Beam Rotation with 200 MHz RF

- RF frequency must vary along bunching channel
 Because High mom. bunches move faster than lower

\[\text{d}E \]

\[\text{Drift} \quad \text{RF Buncher} \quad \text{RF} \]

\[\text{dt} \]
Simulation of Phase Rotation

110.7 m End of drift

161.7 m End of bunch

215.63 m End of rotate

265.9 m 50 m of cooling
3) Ionization Cooling

Electron, synchrotron, and stochastic cooling all too slow

- **TRANSVERSE**
 - Competes with Coulomb Scattering
 - Best with Hydrogen
 - and Strong Focus

- dE/E Reduced by Emit Exchange (Not needed for Factory)
 - Competes with Straggling
 - Best with strong RF
 - \(\longrightarrow \) large \(\frac{dp}{p} \)
 - Also works with material in bend
Study IIa Cooling Channel

- ≤ 200 MHz RF for required aperture
- LiH instead of Liquid Hydrogen (as in Study II)
- Simpler focus system than Study II (see MICE Exp. below)
Cooling Performance in Study IIa

![Graph showing cooling performance in Study IIa with data points and labels.]
Cooling with Emittance Exchange in a Ring

- Bending and wedge absorbers: Cooling also in longitudinal
- Many turns gives more cooling at lower cost
- Needed for a Muon Collider
- e.g RFOFO Ring Now fully simulated

- 6D emittance down by 300 (cf 1000,000 req for Collider)
R&D on Ionization Cooling Components
MUCCOL Collaborative Lead by Fermilab (A. Bross)

- Design, Build, Absorbers
- Design, Build, and Test Absorber Windows
- High Gradient RF Studies at 805 MHz (Lab G FNAL)
- Design & Start Const. of 201 MHz Cavities
- Experiment with High Pressure Hydrogen STTR
- Test area at FNAL
MUON IONIZATION COOLING EXPERIMENT (MICE)

- Solid Design based on Study-2 channel (Similar components to RFOFO cooling ring)
- International Collaboration: (US, Europe, Japan)
- Funding proposal sent to NSF, (& in Europe & Japan)
- Proposal has Scientific Approval at RAL
4) R&D ON ACCELERATION
SC Cavity work for Acceleration (Cornell NSF)

- Built new test pit
- Design, build, and test 201 MHz SC cavities
 11 MV/m achieved
 limited by drop in Q c.f. FS2 spec = 16 MV/m
- Cavity returned to CERN for re-coating
ACCELERATION

- Must be fast: Muon lifetime = 2 micro sec
- Synchrotron much too slow Except above 500 GeV for collider
- Use initial SC Linac
- Then Recirculating Linear Collider (RLA)

Dog-bone and Racetrack RLA’s, with same number of passes through the Linac, have:
- slightly less total arc length
- much easier switch-yards

- Followed by FFAG’s (see below)
Scaling FFAG MURA & KEK (Japan)

\[p \propto r^{n+1} \]

- Drift for rf
- Bend outward
- Bend inward

\[B \propto r^n \]

Low Momentum
Mid Momentum
High Momentum

- Eliminates multiple arcs of RLA
- Allows more turns \(\rightarrow \) less RF
- \(\Delta p \) limited only by aperture
 but only 1:2 for Japan 20 GeV
- Tune independent of momentum
 i.e. Chromaticity=0

BUT

- Large magnet apertures
- Non-isochronous
 \(\rightarrow \) Low Frequency RF
 \(\rightarrow \) Non-superconducting RF

- Studies in Collaboration with Japan
 2-3 Workshops per year
Non-Scaling FFAG (Proposed by Carol Johnstone)

Combined function strongly focusing lattices without sextupoles e.g. from Dejan Trbojevic

- Orbits are not similar, as in scaling
- They are closer together than in scaling
 → smaller apertures
 → more isochronous
More Isochronous than Scaling Allows use of SC RF

Design can be isochronous at center of momentum range:

- Less path length difference for same energy range
- Non-monotonic
- Allows 200 MHz (vs. 25 MHz for scaling)
But huge chromaticity

→ Tunes cross many integer resonances (right scale)

But if

1. All cells essentially identical
2. Reasonably small magnet errors
3. Rapid acceleration

Initial simulations indicate negligible emittance growth
Conclusion

• Muon Collider
 – Interesting for physics & Smaller than Linear Collider
 – Difficult technically
 – Neutrino Radiation limits Maximum Energy
 – Now returning to its study

• Neutrino Factory
 – If $\theta_{13} < 10^{-2}$ Factory is only hope to see CP
 – If $\theta_{13} > 10^{-2}$ Factory perhaps not needed
 – Will not know for 5-10 years
 – Neutrino Factory Design in good shape

• Sound R&D Program in Progress
 – Hg Jet Target for 4 MW (CERN Exp)
 – Cooling Components (MUCOOL)
 – SC RF at 200 MHz (Cornell)
 – Cooling Experiment (MICE)

• Interesting Spin-Offs: Hg Target, Non-Scaling FFAG’s

• US Funding a problem for MICE