An Interval Method for Linear IVPs for ODEs

Ned Nedialkov
Department of Computing and Software
McMaster University, Canada
nedialk@mcmaster.ca

Joint work with Qiang Song
McMaster University

Improved version of the talk given at the
Workshop on Taylor Models
17–20 December 2003, Miami, Florida
The Problem

Enclose the solution of a system of $n \geq 2$ equations IVP

$$y' = A(t)y + g(t), \quad y(0) = y_0 \in [y_0].$$

Idea (Lohner, Nickel)

- Perform $(n + 1)$ integrations of points specifying a parallelepiped at t_i and enclose each point solution at t_{i+1}.

 We have $(n + 1)$ boxes.

- Find $(n + 1)$ points that determine a parallelepiped, which encloses all the parallelepipeds with vertices in these boxes.

- Repeat.
Figure 1: (a) enclosures of point solutions at t_1; (b) some of the parallelepipeds with vertices in these enclosures (boxes); the larger box contains the fourth vertices; (c–d) parallelepipeds enclosing the true solution
Figure 2: The same computation as in the previous figure, except that the width of each component of the enclosures is 2×10^{-10}. The boxes are denoted by “+”.
Figure 3: (a) enclosures of point solutions at t_1; (b) some of the parallelepipeds with vertices in these enclosures (boxes); the larger box contains the fourth vertices; (c–d) parallelepipeds enclosing the true solution
Figure 4: The same computation as in the previous figure, except that the width of each component of the enclosures is 2×10^{-10}. The boxes are denoted by “+”.
Advantages

• We enclose point solutions:
 Taylor series + remainder term.

• The method does not impose restrictions on the size of the initial box.

• An automatic differentiation package for computing Taylor coefficients for the solution to $Y' = A(t)Y$, $Y(0) = I$ is not needed.
 These coefficients are computed in AWA and VNODE.

Difficulties

• How to compute $(n + 1)$ points on each step such that the parallelepiped specified by them encloses the solution set.

• How to achieve small overestimations and reduce the wrapping effect.
Outline

1. Enclosing point solutions
2. Computing a parallelepiped
3. Choice of a transformation matrix
4. Reducing the wrapping effect
5. Concluding remarks
Enclosing Point Solutions

Denote by $f_i(\cdot)$ the ith Taylor coefficient of the solution to

$$y' = A(t)y + g(t).$$

(1)

If h and $[\tilde{y}_0] \ni y_0$ are such that

$$y_0 + \sum_{i=1}^{p-1} t^i f_i(y_0) + t^p f_p([\tilde{y}_0]) \subseteq [\tilde{y}_0] \quad \text{for all } t \in [0, h],$$

then (1) with $y(0) = y_0$ has a unique solution in $[0, h]$, and

$$y(t; t_0, y_0) \in [\tilde{y}_0] \quad \text{for all } t \in [0, h].$$

At $t = h$,

$$y(h; t_0, y_0) \in y_0 + \sum_{i=1}^{p-1} h^i f_i(y_0) + h^p f_p([\tilde{y}_0]).$$
Assume that at a point \(t_i \), for all \(y_0 \in [y_0] \),

\[
y(t_i; t_0, y_0) \in \{ b_0 + B\alpha \mid \alpha \in [0, 1]^n \},
\]

where \(B \in \mathbb{R}^{n \times n} \), and \([0, 1]^n\) denotes the vector with each component \([0, 1]\).

We integrate \(v_0 = b_0, \, v_1 = b_0 + b_1, \ldots, v_n = b_0 + b_n \)

to compute \([w_0], [w_1], \ldots, [w_n]\).

That is, for each \(v_j \),

\[
y(t_{i+1}; t_i, v_j) \in [w_j] = v_j + \sum_{i=1}^{p-1} h^i f_i(v_j) + h^p f_p([\tilde{v}_j]),
\]

where \(v_j \in [\tilde{v}_j] \).
Computing a Parallelepiped

Denote
\[c_j = \text{mid}([w_j]), \]
\[[e_j] = [w_j] - c_j, \quad j = 0, \ldots, n, \]
\[C \text{ the } n \times n \text{ matrix with } j\text{th column } c_j - c_0, \text{ and} \]
\[[e] = \sum_{j=1}^{n} [e_j] + (n - 1)[e_0]. \]

For all \(y_i \in \{ b_0 + B\alpha \mid \alpha \in [0, 1]^n \} \),
\[y(t_{i+1}; t_i, y_i) \in \{ w_0 + \sum_{j=1}^{n} \alpha_j (w_j - w_0) \mid \alpha_j \in [0, 1], w_j \in [w_j] \} \]
\[\subseteq \{ c_0 + C\alpha + [e] \mid \alpha \in [0, 1]^n \}, \]
since for $\alpha \in [0, 1]^n$, $w_j \in [w_j]$, and $e_j = w_j - c_j \in [e_j]$ ($j = 0, \ldots, n$),

$$w_0 + \sum_{j=1}^{n} \alpha_j (w_j - w_0)$$

$$= c_0 + C\alpha + (w_0 - c_0) + \sum_{j=1}^{n} \alpha_j (w_j - w_0 - (c_j - c_0))$$

$$= c_0 + C\alpha + e_0 + \sum_{j=1}^{n} \alpha_j (e_j - e_0)$$

$$= c_0 + C\alpha + \sum_{j=1}^{n} \alpha_j e_j + (1 - \sum_{j=1}^{n} \alpha_j)e_0$$

$$\in \{ c_0 + C\alpha + \sum_{j=1}^{n} [e_j] + (n - 1)[e_0] \mid \alpha \in [0, 1]^n \}$$

$$= \{ c_0 + C\alpha + [e] \mid \alpha \in [0, 1]^n \}.$$
Figure 5: We want to enclose the set \(\{ c_0 + C\alpha + [e] \mid \alpha \in [0, 1]^n \} \) by a parallelepiped.
We want to find g_0 and G such that

$$\{ c_0 + C\alpha + e \mid \alpha \in [0, 1]^n, e \in [e] \} \subseteq \{ g_0 + G\alpha \mid \alpha \in [0, 1]^n \}.$$

Let $H \in \mathbb{R}^{n \times n}$ be nonsingular.

Denote

$$[r] = (H^{-1}C)[0, 1]^n + H^{-1}[e] \quad \text{and} \quad D = \text{diag}(w([r])).$$

Then

$$\{ c_0 + C\alpha + e \mid \alpha \in [0, 1]^n, e \in [e] \}
= \{ c_0 + H((H^{-1}C)\alpha + H^{-1}e) \mid \alpha \in [0, 1]^n, e \in [e] \}
\subseteq \{ c_0 + Hr \mid r \in [r] \}
= \{ c_0 + H\bar{r} + Hr \mid r \in [0, \bar{r} - \bar{r}] = D[0, 1]^n \}
= \{ (c_0 + H\bar{r}) + (HD)\alpha \mid \alpha \in [0, 1]^n \}
= \{ g_0 + G\alpha \mid \alpha \in [0, 1]^n \}.$$

This derivation is by R. Lohner (2001, private communications).
Now, for all $y_i \in \{ b_0 + B\alpha | \alpha \in [0,1]^n \}$,

$$y(t_{i+1}; t_i, y_i) \in \{ g_0 + G\alpha | \alpha \in [0,1]^n \}.$$

We integrate $g_0, (g_0 + g_1), \ldots, (g_0 + g_n)$.

Subtlety: we compute in floating-point arithmetic \tilde{g}_0 and \tilde{G} corresponding to g_0 and G.

Is

$$\{ c_0 + C\alpha + e | \alpha \in [0,1]^n, e \in [e] \} \subseteq \{ \tilde{g}_0 + \tilde{G}\alpha | \alpha \in [0,1]^n \}? \quad (2)$$

If

$$\tilde{G}^{-1}(c_0 - g_0) + (\tilde{G}^{-1}C)[0,1]^n + \tilde{G}^{-1}[e] \subseteq [0,1]^n \quad (3)$$

then (2) holds.

If (3) does not hold in computer arithmetic, inflate $[e]$ and try again.
Choice of a Transformation Matrix

Parallelepiped method

\[H = C, \]
\[[r] = (H^{-1}C)[0, 1]^n + H^{-1}[e] = [0, 1]^n + C^{-1}[e]. \]

This method breaks down when \(C \) is close to singular.

QR-factorization method

\[C = QR, \quad H = Q, \]
\[[r] = (H^{-1}C)[0, 1]^n + H^{-1}[e] = R[0, 1]^n + Q^T[e]. \]
Figure 6: Enclosures obtained by the parallelepiped and QR approaches.
On some problems, with a large initial box, the QR method can produce large overestimations.

Example:

\[
y' = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} y, \quad y(0) \in ([1, 2], [1, 2])^T.
\]

We take \([e] = [-10^{-3}, 10^{-3}], \text{ } h = 0.2.\]

The eigenvalues of \(\exp(hA)\) are \(\approx 0.8187\) and \(0.6703\).
Figure 7: QR; the blue lines denote the true solution set.
Figure 8: Parallelepiped; the vertices of the true solution are denoted by “+”.
Example:

\[y' = \begin{pmatrix} -0.5 & 1 \\ -1 & 0 \end{pmatrix} y, \quad y(0) \in ([1, 2], [1, 2])^T. \]

We take \([e] = [-10^{-4}, 10^{-4}], h = 0.2.\]

The eigenvalues of \(\exp(hA)\) are \(\approx 0.9334 \pm 0.1831i\), and \(\rho(\exp(hA)) \approx 0.9512.\)
Figure 9: QR and parallelepiped methods
Reducing the Wrapping Effect

The true solution is in

\[
\{ g_0 + G\alpha \mid \alpha \in [0, 1]^n \} \\
= \{ c_0 + Hr \mid r \in (H^{-1}C)[0, 1]^n + H^{-1}[e] \}.
\]

Parallelepiped

\[
H = C, \quad [r_p] = [0, 1]^n + C^{-1}[e].
\]

QR factorization

\[
C = QR, \quad H = Q, \quad [r_Q] = R[0, 1]^n + Q^T[e].
\]

Can we combine them, or switch between them at run time?

Two ad-hoc solutions: Approach I and II.
Approach I

We can (roughly) measure the overestimations in the parallelepiped and QR methods by \(\|w(C[r_p])\| \) and \(\|w(Q[r_Q])\| \), respectively.

Select:

if \(\|w(C[r_p])\| \leq \|w(Q[r_Q])\| \)

\[H = C, \quad [r] = [r_p] \] (parallelepiped)

else

\[H = Q, \quad [r] = [r_Q] \] (QR)
Example:

\[y' = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} y, \quad y(0) \in ([1, 2], [1, 2])^T, \]

\[[e] = [-10^{-3}, 10^{-3}], \quad h = 0.2. \]
Figure 10: Approach I
Approach II

Let β_{max} be the largest angle among the angles between every two columns of C.

Let β_{min} be the smallest such angle.

Let θ, $0 < \theta \ll \pi$, be a constant.

Select:

if $\beta_{\text{min}} > \theta$ and $\beta_{\text{max}} < \pi - \theta$

$$H = C, [r] = [r_p] \text{ (parallelepiped)}$$

else

$$H = Q, [r] = [r_Q] \text{ (QR)}$$
Example:

\[y' = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} y, \quad y(0) \in ([1, 2], [1, 2])^T, \]

\[[e] = [-10^{-3}, 10^{-3}], \quad h = 0.2, \]

\[\theta = 10^\circ = \pi/18. \]
Figure 11: Approach II
Concluding Remarks

- To reduce the wrapping effect when propagating larger sets, a combination of the parallelepiped and QR-factorization methods may be necessary.
- When to switch from one method to the other?
- An eigenvalue, or stability type analysis of a combined approach may be necessary.