Status of Study of Spin Dynamics in Electrostatic Rings to Search Electric Dipole Moment

Denis Zyuzin, Yu. Senichev

Institute for Nuclear Physics
Forschungszentrum Juelich

December 17, 2011
Contents

1 Electric dipole moment

2 Spin dynamics simulation
 - First approach
 - Non-linear model

3 Methods to increase SCT
 - Customly shaped deflectors
 - Alternating spin aberration method
Our goal

Track particle with initial horizontal spin polarization for a very large number of orbits, say 10^9, to detect the appearance of a vertical spin component that will indicate the presence of an electric dipole moment. EDM of proton $d_p < 10^{-26}\text{e} \cdot \text{cm}$. So we need a storage ring which will conserve horizontal spin polarization for a long time.
Track particle with initial horizontal spin polarization for a very large number of orbits, say 10^9, to detect the appearance of a vertical spin component that will indicate the presence of an electric dipole moment. EDM of proton $d_p < 10^{-26} \text{e} \cdot \text{cm}$. So we need a storage ring which will conserve horizontal spin polarization for a long time.
Spin coherence time

SCT

Spin coherence time (SCT) — time when RMS spin orientation of the bunch particles reaches one radian.

Requirements of planned SrEDM experiment: the SCT should be more than 1000 seconds. During this time each particle performs about 10^9 turns in storage ring moving on different trajectories through the optics elements.
Electric dipole moment
Spin dynamics simulation
Methods to increase SCT

\[
\frac{d\vec{S}}{dt} = \mu \vec{S} \times (\vec{B} - c\beta \times \vec{E}) + d \vec{S} \times (\vec{E} + \beta c \times \vec{B})
\]

\(\mu, d\) — magnetic and electric dipole moments, \(c\) is the speed of light, \(\beta\) is the relative velocity and \(E, B\) — the electric and the magnetic field vectors.

\[
\frac{d\vec{S}}{dt} = \vec{\omega}_G \times \vec{S}
\]

\[
\vec{\omega}_G = -\frac{e}{m_0\gamma c} \left\{ Gc\vec{B} - \left(G - \frac{1}{\gamma^2 - 1} \right)(\vec{\beta} \times \vec{E}) \right\}
\]

\[
G = \frac{g - 2}{2},
\]

\(G\) — the anomalous magnetic moment, \(g\) is the gyromagnetic ratio and \(\omega_G\) is the spin precession frequency.
T-BMT equation

\[
\frac{d \vec{S}}{dt} = \mu \vec{S} \times (\vec{B} - c\beta \times \vec{E}) + d \vec{S} \times (\vec{E} + \beta c \times \vec{B})
\]

\[\mu, \ d \text{ — magnetic and electric dipole moments, } c \text{ is the speed of light, } \beta \text{ is the relative velocity and } E, \ B \text{ — the electric and the magnetic field vectors.}\]

\[
\frac{d \vec{S}}{dt} = \vec{\omega}_G \times \vec{S}
\]

\[
\vec{\omega}_G = -\frac{e}{m_0\gamma c} \left\{ Gc \vec{B} - \left(G - \frac{1}{\gamma^2 - 1} \right)(\vec{\beta} \times \vec{E}) \right\}
\]

\[G = \frac{g - 2}{2},\]

\[G \text{ — the anomalous magnetic moment, } g \text{ is the gyromagnetic ratio and } \omega_G \text{ is the spin precession frequency.}\]
Purely Electrostatic Ring

\[\vec{\omega}_G = -\frac{e}{m_0 \gamma c} \left\{ \left(\frac{1}{\gamma^2 - 1} - G \right) \left(\vec{\beta} \times \vec{E} \right) \right\}. \]

Frozen Spin Method

Consider \(\gamma = \gamma_{mag} : \)

\[\frac{1}{\gamma_{mag}^2 - 1} - G = 0, \]

and \(\omega_G = 0. \) Proton “magic” energy is 232 MeV.
Purely Electrostatic Ring

\[
\overrightarrow{\omega}_G = -\frac{e}{m_0\gamma c} \left\{ \left(\frac{1}{\gamma^2 - 1} - G \right) \left(\vec{\beta} \times \vec{E} \right) \right\}.
\]

Frozen Spin Method

Consider \(\gamma = \gamma_{mag} \):

\[
\frac{1}{\gamma_{mag}^2 - 1} - G = 0,
\]

and \(\omega_G = 0 \). Proton “magic” energy is 232 MeV.
Spin oscillation of non-magic particle

If $\gamma \neq \gamma_{\text{mag}}$:

$$\vec{\omega}_G = -\frac{e}{m_0 \gamma c} \left\{ -2G \frac{\Delta p}{p} \left(\vec{\beta} \times \vec{E} \right) \right\}.$$

Spin oscillation tune ν_{sz} satisfies:

$$S_z = S_{z0} \cos 2\pi \nu_{sz} n, \quad \nu_{sz} = \frac{e\bar{E}_x L_{cir}}{2\pi m_0 c^2 \gamma} G \frac{\Delta p}{p},$$

where \bar{E}_x is the average value of the deflecting electric field. If $(\Delta p/p)_{\text{max}} = 10^{-4}$, then $\nu_{sz} = 1.588 \cdot 10^{-4}$, or $\text{SCT} = 6300$ turns $\approx 1\text{msec}$.
Spin oscillation of non-magic particle

If $\gamma \neq \gamma_{\text{mag}}$:

$$\vec{\omega}_{G} = -\frac{e}{m_0\gamma c} \left\{ -2G \frac{\Delta p}{p} \left(\vec{\beta} \times \vec{E} \right) \right\}.$$

Spin oscillation tune ν_{sz} satisfies:

$$S_z = S_{z0} \cos 2\pi \nu_{sz} n, \quad \nu_{sz} = \frac{e\bar{E}_x L_{\text{cir}}}{2\pi m_0 c^2 \gamma} \frac{G}{p} \frac{\Delta p}{p},$$

where \bar{E}_x is the average value of the deflecting electric field. If $(\Delta p/p)_{\text{max}} = 10^{-4}$, then $\nu_{sz} = 1.588 \cdot 10^{-4}$, or $\text{SCT} = 6300$ turns $\approx 1\text{msec}$.
Using of RF cavity to increase SCT

With \((\Delta p/p) = (\Delta p/p)_{\text{max}} \cos (\nu_z \varphi)\) equation describing the oscillation of the spin:

\[
\frac{d^2 S_z}{d\varphi^2} + \left\{ \frac{e E_x L_{\text{cir}}}{2\pi m_0 c^2 \gamma} 2G \left(\frac{\Delta p}{p} \right)_{\text{max}} \cos (\nu_z \varphi) \right\}^2 S_z = 0.
\]

The spin vibrates within a very narrow angle \(\Phi_{\text{max}}\) with longitudinal tune \(\Phi \sim \Phi_{\text{max}} \sin (\nu_z \varphi)\). The value \(\Phi_{\text{max}} \sim (\nu_{sz}/\nu_z)^2\) depends on the frequency ratio.
Equilibrium energy level modulation

Figure: Phase trajectory in longitudinal plane for initial coordinate $x = 3\text{mm}, y = 0$.

If $(\Delta p/p)_{\text{max}} = 10^{-4}$ and the beam emittance $2\text{mm} \cdot \text{mrad}$, SCT will be ~ 500 sec.
The second order influence on spin

The spin tune in the second approach versus momentum:

$$\frac{d^2 S_z}{d\phi^2} + \left\{ \frac{eE_xL_{cir}}{2\pi m_0 c^2 \gamma} \left[-2G \frac{\Delta p}{p} + \frac{1 + 3\gamma^2}{\gamma^2} G \left(\frac{\Delta p}{p} \right)^2 \right] \right\}^2 S_z = 0$$

and

$$\nu_{sz} = \frac{eE_x L_{cir}}{2\pi m_0 c^2 \gamma} \left\langle -2G \left(\frac{\Delta p}{p} \right) \cos(\nu_z \phi) + \frac{1 + 3\gamma^2}{\gamma^2} G \left(\frac{\Delta p}{p} \right)^2 \right\rangle m$$

$$\cdot \cos^2(\nu_z \phi) = \frac{eE_x L_{cir}}{2\pi m_0 c^2 \gamma} \frac{1 + 3\gamma^2}{\gamma^2} \frac{G}{2} \left(\frac{\Delta p}{p} \right)_m^2$$
Variation of spin tune

Assuming “magic” condition we define a variation of the spin tune through the finite differences up to second order:

$$\delta \nu_S = \frac{e}{2 \pi m_0 c^2} \delta \left(\frac{1}{\gamma^2 - 1} - G \right) L_{\text{orb}} E_x \frac{1}{\gamma} \left[1 + \frac{\delta L_{\text{orb}}}{L_{\text{orb}}} + \frac{\delta E_x}{E_x} + \gamma \delta \left(\frac{1}{\gamma} \right) \right],$$

$$\delta \left(\frac{1}{\gamma^2 - 1} - G \right) = -2G \frac{\Delta p}{p} + \frac{1 + 3\gamma^2}{\gamma^2} G \left(\frac{\Delta p}{p} \right)^2 + \ldots$$

$$\frac{\delta L_{\text{orb}}}{L_{\text{orb}}} = \alpha_1 \frac{\Delta p}{p} + \alpha_2 \left(\frac{\Delta p}{p} \right)^2 + \ldots$$

$$\frac{\delta E_x}{E_x} = -k_1 \frac{x}{R} + k_2 \left(\frac{x}{R} \right)^2 + \ldots$$

$$\gamma \delta \left(\frac{1}{\gamma} \right) = -\frac{\gamma^2 - 1}{\gamma^3} \left(\frac{\Delta p}{p} \right) + \frac{(\gamma^2 - 1)^2}{2\gamma^5} \left(\frac{\Delta p}{p} \right)^2 + \ldots$$
Assuming “magic” condition we define a variation of the spin tune through the finite differences up to second order:

\[
\delta \nu_S = \frac{e}{2\pi m_0 c^2} \delta \left(\frac{1}{\gamma^2 - 1} - G\right) L_{\text{orb}} E_x \frac{1}{\gamma} \left[1 + \frac{\delta L_{\text{orb}}}{L_{\text{orb}}} + \frac{\delta E_x}{E_x} + \gamma \delta \left(\frac{1}{\gamma}\right)\right],
\]

\[
\delta \left(\frac{1}{\gamma^2 - 1} - G\right) = -2G \frac{\Delta p}{p} + \frac{1 + 3\gamma^2}{\gamma^2} G \left(\frac{\Delta p}{p}\right)^2 + \ldots
\]

\[
\frac{\delta L_{\text{orb}}}{L_{\text{orb}}} = \alpha_1 \frac{\Delta p}{p} + \alpha_2 \left(\frac{\Delta p}{p}\right)^2 + \ldots
\]

\[
\frac{\delta E_x}{E_x} = -k_1 \frac{x}{R} + k_2 \left(\frac{x}{R}\right)^2 + \ldots
\]

\[
\gamma \delta \left(\frac{1}{\gamma}\right) = -\frac{\gamma^2 - 1}{\gamma^3} \left(\frac{\Delta p}{p}\right) + \frac{(\gamma^2 - 1)^2}{2\gamma^5} \left(\frac{\Delta p}{p}\right)^2 + \ldots
\]
Variation of spin tune

Grouping the coefficients we have:

\[
\delta \nu_S = \frac{e L_{\text{orb}} E_x}{2 \pi m_0 \gamma c^2} G \left\{ -2 \frac{\Delta p}{p} + \left(\frac{\Delta p}{p} \right)^2 \left[\frac{5 \gamma^2 - 1}{\gamma^2} - 2 \alpha_1 - \frac{1 + 3 \gamma^2}{\gamma^2} k_1 \frac{x}{R} + \frac{1 + 3 \gamma^2}{\gamma^2} k_2 \left(\frac{x}{R} \right)^2 \right] + 2 \frac{\Delta p}{p} \left[k_1 \frac{x}{R} - k_2 \left(\frac{x}{R} \right)^2 \right] \right\}
\]
Variation of spin tune

Finally we have

$$\delta \nu_S = \frac{eL_{\text{orb}}E_x}{2\pi m_0 \gamma c^2} G \left[F_2 \left(\alpha_1, k_1, k_2, \frac{x}{R} \right) \left(\frac{\Delta p}{p} \right)^2 + 2F_1 \left(k_1, k_2, \frac{x}{R} \right) \frac{\Delta p}{p} \right]$$

Or the spin tune equation can be represented in another form:

$$\delta \nu_S = \frac{eL_{\text{orb}}E_x}{2\pi m_0 \gamma c^2} G \left[\tilde{F}_2 \left(k_2, \frac{\Delta p}{p} \right) \left(\frac{x}{R} \right)^2 + 2\tilde{F}_1 \left(k_1, \frac{\Delta p}{p} \right) \frac{x}{R} + \tilde{F}_0 \left(\alpha_1, \frac{\Delta p}{p} \right) \right]$$
Finally we have

$$\delta \nu_S = \frac{eL_{orb}E_x}{2\pi m_0 \gamma c^2} G \left[F_2 \left(\alpha_1, k_1, k_2, \frac{x}{R} \right) \left(\frac{\Delta p}{p} \right)^2 + 2F_1 \left(k_1, k_2, \frac{x}{R} \right) \frac{\Delta p}{p} \right]$$

Or the spin tune equation can be represented in another form:

$$\delta \nu_S = \frac{eL_{orb}E_x}{2\pi m_0 \gamma c^2} G \left[\tilde{F}_2 \left(k_2, \frac{\Delta p}{p} \right) \left(\frac{x}{R} \right)^2 + 2\tilde{F}_1 \left(k_1, \frac{\Delta p}{p} \right) \frac{x}{R} + \tilde{F}_0 \left(\alpha_1, \frac{\Delta p}{p} \right) \right]$$
Variation of spin tune

Figure: Two dimensional parabolic dependence of spin tune aberration on $(\frac{\Delta p}{p})^2$ and $(\frac{x}{R})^2$
Variation of spin tune

Figure: Two dimensional parabolic dependence of spin tune aberration on
\(\left(\frac{\Delta p}{p} \right)^2 \) and \(\left(\frac{x}{R} \right)^2 \)
Cylindrical deflectors

We studied how the SCT depends on initial conditions in a structure without optimization with $k_1 = 1$, $k_2 = -1$. Figure shows the maximum spin deflection angle after 10^9 turns for different initial horizontal deviations.

![Graph showing the maximum spin deflection angle for different initial horizontal deviations.](image)
Cylindrical deflectors

The maximum angle for spin particles with initial $x = 2\text{mm}$ can be up to 10 radians even at the momentum deviation $\Delta p/p = 10^{-4}$. It means that spin of the particle will make ≈ 1.5 turnovers during this time, or RMS spin deviation is about 2 radians, which corresponds to a SCT about 500 seconds.
Methods to increase SCT

Our goal is to achieve maximum flatness in the working range of the beam parameters.

- The first method is to fit the parameters of electrical deflector and ring lattice in order to reduce this dependence that is to choose the lattice with a compensation of the mutual influence of all parameters. In other words, we need to make the surface maximally flat in the workspace of $(\Delta p/p)^2$ and $(x/R)^2$.

- The second method is to alternately change the deflector parameters and thereby to alternate spin rotation.
Our goal is to achieve maximum flatness in the working range of the beam parameters.

- The first method is to fit the parameters of electrical deflector and ring lattice in order to reduce this dependence that is to choose the lattice with a compensation of the mutual influence of all parameters. In other words, we need to make the surface maximally flat in the workspace of $(\Delta p/p)^2$ and $(x/R)^2$.

- The second method is to alternately change the deflector parameters and thereby to alternate spin rotation.
$k_1 = 0.94, \ k_2 = 0.96$

Figure: Maximum spin deflection angle after 10^9 turns versus x deviation

Maximum spread spin angle for the entire beam is less than 1 radian, or RMS deviation is about 0.2 radians, which corresponds to SCT about 5000 seconds.
Figure: Maximum spin deflection angle after 10^9 turns versus x deviation

Maximum spread spin angle for the entire beam is less than 1 radian, or RMS deviation is about 0.2 radians, which corresponds to SCT about 5000 seconds.
\[k_1 = 0.94, \quad k_2 = 0.96 \]

Problems for customly shaped deflectors:
- How to create plates with the required \(k_1 \) and \(k_2 \)
- How to adjust optics to the required minimum SCT
$k_1 = 0.94, k_2 = 0.96$

Problems for customly shaped deflectors:

- How to create plates with the required k_1 and k_2
- How to adjust optics to the required minimum SCT
The ring is equipped with two types of deflector with $k_1 = \text{const}$, and $k_2 = k_{av} \pm \delta k$ changing from one deflector to another.

- In such optics is easier to achieve minimum spin aberration
- Raising the field strength between the plates in even deflectors and reducing in the odd deflectors it effectively adjust the required coefficients k_1 and k_2. It allows to adjust the spin of aberration to minimum.
The ring is equipped with two types of deflector with $k_1 = \text{const}$, and $k_2 = k_{av} \pm \delta k$ changing from one deflector to another.

- In such optics is easier to achieve minimum spin aberration
- Raising the field strength between the plates in even deflectors and reducing in the odd deflectors it effectively adjust the required coefficients k_1 and k_2. It allows to adjust the spin of aberration to minimum.
Figure: Maximum spin deflection angle after 10^9 turns versus x deviation
The ring is equipped with two types of deflector with $k_1 = \text{const}$, and $k_2 = k_{av} \pm \delta k$ changing from one deflector to another.

- In such optics is easier to achieve minimum spin aberration
- Raising the field strength between the plates in even deflectors and reducing in the odd deflectors it effectively adjust the required coefficients k_1 and k_2. It allows to adjust the spin of aberration to minimum.
Thank you for your attention.