High-Order Taylor Model Enclosures of Invariant Manifolds of ODEs

Alexander Wittig

Department of Physics and Astronomy, Michigan State University
Department of Mathematics, Michigan State University
East Lansing, MI, 48824

Taylor Model Workshop 2011, Key West
Invariant Sets and Manifolds in ODEs

- Vector field $F : \mathbb{R}^n \to \mathbb{R}^n$ has hyperbolic critical point at origin
- $\Phi_t(x)$ is flow of F such that $\Phi_0(x) = x$.
- Stable set: $M_s \subset \mathbb{R}^n$
 \[\forall x \in M_s \lim_{t \to \infty} \Phi_t(x) = 0. \]
- Unstable set: $M_u \subset \mathbb{R}^n$
 \[\forall x \in M_u \lim_{t \to \infty} \Phi_{-t}(x) = 0. \]
Invariant set of ODE is identical to invariant set of time 1 map $\Phi_1(x)$.

- **Stable set:** $M_s \subset \mathbb{R}^n$

 $$\forall x \in M_s \lim_{k \to \infty} \Phi_1^k(x) = \Phi_k(x) = 0.$$

- **Unstable set:** $M_u \subset \mathbb{R}^n$

 $$\forall x \in M_u \lim_{k \to \infty} \Phi_{-1}^k(x) = \Phi_{-k}(x) = 0.$$
Theorem (Invariant Manifold Theorem)

If $F(0) = 0$, and

$$DF(0) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

with $\lambda_1, \ldots, \lambda_k > 0$ and $\lambda_{k+1}, \ldots, \lambda_n < 0$ then the invariant sets are manifolds of dimension k and $n - k$. These manifolds are tangent to the linear space spanned by x_1, \ldots, x_k and x_{k+1}, \ldots, x_n at the origin.
Goal

We want to obtain sharp enclosures of the invariant manifolds.

What exactly does that mean?

1. local manifold must not intersect "sides"
2. local manifold must intersect all "ends"
Goal

We want to obtain sharp enclosures of the invariant manifolds.

General recipe:

1. Construct polynomial approximation of invariant manifold
2. Add thin, heuristic error bound to approximation
3. Verify that no manifold sticks out at the sides
4. Verify that it does come out at the ends
Invariant Manifold Approximation

Polynomial approximation is obtained in an order-by-order construction:

1. Taylor expansion of flow around 0
2. Insert small time $t_0 \Rightarrow$ time t_0 map $\Phi_{t_0}(x)$
3. Construct invariant polynomial $\gamma(s) : \mathbb{R}^k \to \mathbb{R}^n$, mapping polynomial $P : \mathbb{R}^k \to \mathbb{R}^k$
 Condition:
 $$\Phi_{t_0}(\gamma(s)) = \gamma(P(s))$$

 P is chosen such that γ on stable/unstable subspace \mathbb{R}^k is identity.

All steps non-verified, can do whatever you want (almost).
Unstable Manifold Verification for 2D manifold in 3D

Unstable manifold in x-y plane:
Thicken in z (stable) direction by $\varepsilon > 0$ (typically $\varepsilon \approx 10^{-12}$)

$$\Gamma(x, y, t) = \begin{pmatrix} x \\ y \\ \gamma_z(x, y) + \varepsilon t \end{pmatrix}$$
Theorem

Local unstable manifold \(W_{loc}^u \) does not intersect sides of \(\Gamma \) if \(F \) on sides points inwards.

For stable manifold just use \(-F\)
Unstable Manifold Verification for 2D manifold in 3D

Does manifold leave Γ?
Need different enclosure C to show this.

- Thickness of red ends ≈ 0.1 \Rightarrow very rough enclosure
- Contains open neighborhood of local invariant manifold around origin
Want to show: Every point in $C \setminus \{0\}$ leaves C.

- Can’t use Γ, because Γ contains stable manifold!
- \Rightarrow Must avoid local stable manifold in C.
If

1. F points into C on sides (blue)
2. F points out of C on ends (red)
3. F has positive radial component in x-y plane in $C\backslash\{0\}$:

$$F_x(\vec{p}) \cdot p_x + F_y(\vec{p}) \cdot p_y > 0 \quad \forall \vec{p} \in C\backslash\{0\}$$

then every point in $C\backslash\{0\}$ leaves C through the ends.
Unstable Manifold Verification for 2D manifold in 3D

Numerical Problem

Since $F(0) = 0$ is continuous

$$F_x(\vec{p}) \cdot p_x + F_y(\vec{p}) \cdot p_y \to 0$$

as $\vec{p} \to 0$.

Simple bounding not possible to show $F_x(\vec{p}) \cdot p_x + F_y(\vec{p}) \cdot p_y > 0$.
Unstable Manifold Verification for 2D manifold in 3D

\[C(s, t_1, t_2) = s \cdot \begin{pmatrix} 1 \\ t_1 \\ \vartheta t_2 \end{pmatrix} \]

\[F(C(s, t_1, t_2)) = F \left(s \cdot \begin{pmatrix} 1 \\ t_1 \\ \vartheta t_2 \end{pmatrix} \right) \]

\[= \int_0^s DF \left(\hat{s} \cdot \begin{pmatrix} 1 \\ t_1 \\ \vartheta t_2 \end{pmatrix} \right) \cdot \begin{pmatrix} 1 \\ t_1 \\ \vartheta t_2 \end{pmatrix} d\hat{s} + F(C(0, t_1, t_2)) \]

\[= 0 \]
Unstable Manifold Verification for 2D manifold in 3D

For \(s \neq 0 \):

\[
\frac{1}{s} F(C(s, t_1, t_2)) = \frac{1}{s} \int_0^s DF \left(\hat{s} \cdot \begin{pmatrix} 1 \\ t_1 \\ \vartheta t_2 \end{pmatrix} \right) \cdot \begin{pmatrix} 1 \\ t_1 \\ \vartheta t_2 \end{pmatrix} d\hat{s}
\]

\[
\approx \frac{1}{s} \int_0^s DF(0) \cdot \begin{pmatrix} 1 \\ t_1 \\ \vartheta t_2 \end{pmatrix} d\hat{s}
\]

\[
\approx \frac{1}{s} \int_0^s \begin{pmatrix} \lambda_1 \\ t_1 \lambda_2 \\ \vartheta t_2 \lambda_3 \end{pmatrix} d\hat{s}
\]

\[
\approx \begin{pmatrix} \lambda_1 \\ t_1 \lambda_2 \\ \vartheta t_2 \lambda_3 \end{pmatrix}
\]

Can be evaluated directly in Taylor Model arithmetic!

(The exact expression, not the approximation!)
Unstable Manifold Verification for 2D manifold in 3D

\[C(s, t_1, t_2) = s \cdot \begin{pmatrix}
1 \\
t_1 \\
\vartheta t_2
\end{pmatrix} \]

For \(s \neq 0 \):

\[
F_x(\bar{p}) \cdot p_x + F_y(\bar{p}) \cdot p_y \\
= F_x(C(s, t_1, t_2)) \cdot C_x(s, t_1, t_2) + F_y(C(s, t_1, t_2)) \cdot C_y(s, t_1, t_2) \\
= s^2 \left(\frac{1}{s} F_x(C(s, t_1, t_2)) + \frac{1}{s} F_y(C(s, t_1, t_2)) \cdot t_1 \right) \\
\geq K > 0 \\
\approx s^2 (\lambda_1 + \lambda_2 \cdot t_1^2)
\]
The Lorenz vector field F is given by the equations

\begin{align*}
\dot{x}_1 &= \sigma(x_2 - x_1) \\
\dot{x}_2 &= (\rho - x_3)x_1 - x_2 \\
\dot{x}_3 &= x_1x_2 - \beta x_3
\end{align*}

where ρ, σ, β are parameters. In the classical Lorenz equations, $\rho = 28, \sigma = 10, \beta = 8/3$.
At the origin, the Lorenz System has a hyperbolic critical point with eigenvalues

\[\lambda_1 \approx 11.8 \]
\[\lambda_2 \approx -22.8 \]
\[\lambda_3 (= \beta = 8/3) \approx -2.67 \]

Big difference between \(\lambda_2 \) and \(\lambda_3 \)!
\(\eta_1 = \eta_2 = 1, \eta_3 = 20 \)
Initial Stable Manifold

<table>
<thead>
<tr>
<th>$\eta_2 \backslash \eta_3$</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$5 \cdot 10^{-14}$</td>
<td>$1 \cdot 10^{-13}$</td>
<td>$1 \cdot 10^{-12}$</td>
<td>$1 \cdot 10^{-9}$</td>
<td>$1 \cdot 10^{-7}$</td>
</tr>
<tr>
<td>0.5</td>
<td>$1 \cdot 10^{-14}$</td>
<td>$5 \cdot 10^{-14}$</td>
<td>$1 \cdot 10^{-13}$</td>
<td>$5 \cdot 10^{-11}$</td>
<td>$5 \cdot 10^{-8}$</td>
</tr>
<tr>
<td>0.2</td>
<td>$5 \cdot 10^{-15}$</td>
<td>$1 \cdot 10^{-14}$</td>
<td>$5 \cdot 10^{-14}$</td>
<td>$1 \cdot 10^{-11}$</td>
<td>$6 \cdot 10^{-9}$</td>
</tr>
</tbody>
</table>

Table: Thickening of the manifold enclosure (in diagonalized coordinates) for which verification is successful for various values of η_2 and η_3.
Unstable Manifold

Time $t = 1$
Unstable Manifold

Time $t = 5$
Unstable Manifold

Time $t = 10$

Alexander Wittig

Invariant Manifold Enclosures
Unstable Manifold

Time \(t = 15 \)
Unstable Manifold

Time $t = 20$

Invariant Manifold Enclosures
Unstable Manifold

Time $t = 28$
<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Approximate Length</td>
<td>126</td>
<td>144</td>
<td>166</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Maximum Error</td>
<td>$2 \cdot 10^{-11}$</td>
<td>$3 \cdot 10^{-11}$</td>
<td>$5 \cdot 10^{-11}$</td>
<td>$1 \cdot 10^{-10}$</td>
</tr>
<tr>
<td></td>
<td># of Taylor Models</td>
<td>44</td>
<td>72</td>
<td>106</td>
<td>140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Approximate Length</td>
<td>390</td>
<td>710</td>
<td>1156</td>
<td>1592</td>
</tr>
<tr>
<td></td>
<td>Maximum Error</td>
<td>$2 \cdot 10^{-9}$</td>
<td>$7 \cdot 10^{-8}$</td>
<td>$5 \cdot 10^{-5}$</td>
<td>$7 \cdot 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td># of Taylor Models</td>
<td>353</td>
<td>537</td>
<td>718</td>
<td>1091</td>
</tr>
</tbody>
</table>

Table: Approximate length, maximum error, and number of Taylor Models covering the unstable manifold after propagating for the given time t.
Stable Manifold

Time $t = 0.2$
Stable Manifold

Time $t = 0.3$
Stable Manifold

Time $t = 0.4$
Stable Manifold

Time $t = 0.5$
Stable Manifold

Time $t = 0.6$
Invariant Manifolds
Lorenz System
Manifold Generation
Manifold Iteration

Stable Manifold

<table>
<thead>
<tr>
<th>(t)</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate Area (A)</td>
<td>2360</td>
<td>6307</td>
<td>8112</td>
<td>10192</td>
<td>14862</td>
</tr>
<tr>
<td>Maximum Error (e_{\text{max}})</td>
<td>(3.7 \cdot 10^{-7})</td>
<td>(3.7 \cdot 10^{-7})</td>
<td>(3.7 \cdot 10^{-7})</td>
<td>(1.5 \cdot 10^{-6})</td>
<td>(7.9 \cdot 10^{-6})</td>
</tr>
<tr>
<td>Volume (V)</td>
<td>(8.7 \cdot 10^{-4})</td>
<td>(2.3 \cdot 10^{-3})</td>
<td>(3.0 \cdot 10^{-3})</td>
<td>(1.5 \cdot 10^{-2})</td>
<td>(1.2 \cdot 10^{-1})</td>
</tr>
<tr>
<td># of Taylor Models</td>
<td>70</td>
<td>145</td>
<td>233</td>
<td>473</td>
<td>2469</td>
</tr>
<tr>
<td># of Intervals</td>
<td>(1.7 \cdot 10^{16})</td>
<td>(4.6 \cdot 10^{16})</td>
<td>(5.9 \cdot 10^{16})</td>
<td>(4.5 \cdot 10^{15})</td>
<td>(2.4 \cdot 10^{14})</td>
</tr>
</tbody>
</table>

Table: Approximate area, maximum error, volume, and number of Taylor Models covering the integrated half of the stable manifold within the box \(B = [-50, 50] \times [-50, 50] \times [-20, 90] \) after propagating for the given time \(t \) backwards through the Lorenz.
Both Manifolds

Accuracy: $5 \cdot 10^{-5}$
Thank you for your attention.

Questions?